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ABSTRACT
The cm-rep (continuous medial representation) is a powerful
shape representation method that models a 3D object by de-
scribing its medial axis (skeleton) and boundary as continuous
parametric manifolds. It provides parametrization of the en-
tire interior of the object, which can be used for combined sta-
tistical analysis of shape and appearance. This paper extends
the cm-rep to more complex shapes with multi-figures, i.e.,
shapes whose skeletons have branches. Along the branch-
ing curves, the equality constraints enforced by the medial
geometry are implemented as soft penalties in the deformable
model. The remaining small violations are corrected by local
adjustments. As a proof of concept, the branching continuous
medial representation is applied to a 2-chamber heart model
data set consisting of 428 cardiac shapes from 90 subjects.
The results show that our model can capture the heart shape
accurately.

Index Terms— Medial Axis, Branching Medial Model,
2-chamber heart model, Cardiac Thickness Analysis

1. INTRODUCTION
Medial axis (skeleton) has the ability to represent shape com-
pactly and to provide global shape features. Therefore, it has a
variety of applications in medical imaging analysis field, like
shape analysis [1], shape-based segmentation and registration
[2]. Medial models describe structures by explicitly defin-
ing the medial axis of the structures and deriving boundary
geometry from the medial axis. If the structure has a complex
shape, i.e., its skeleton can not be described by a single curve
(2D) or single sheet (3D), the corresponding medial model is
called branching medial model.
There have been efforts to model complex shapes using

medial models. Han proposed a “multi-figure” medial model
[3] that represents each part of a complex object medially,
but does not model the connections between parts in terms of
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medial geometry. Rather, it uses surface blending to attach a
“child” single-figure medial model to its “parent”. This type
of model is very useful when complex objects have a “parent-
child” organization of parts (like the hand, with a palm and
five fingers), but it is not clear how it can be used to model
structures where the parts do not follow such an obvious tree
hierarchy, like the heart.
Unlike medial representation (m-rep), where the medial

axis is defined by a small set of rich primitives called medial
atoms, continuous medial representation (cm-rep) [4] uses
continuous parametric manifolds to represent the skeleton and
provides parametrization to the entire interior of the model.
Recently, there has been work in extending the cm-rep ap-
proach to complex objects with branching skeletons. The dif-
ficulty of constructing such models arises from the fact that
the geometric relationship between the medial axis and the
boundary imposes equality constraints that must be satisfied
along branching curves. For single-sheet medial models, a
Poisson PDE can be used to generate a space of models that
satisfy this constraint [4], but this approach does not extend
to branching models. Terriberry proposed the first solution
to the problem [5]. He uses Catmull-Clark subdivision sur-
faces to model the skeleton and enforces the equality con-
straints by locally modifying the skeleton at boundary and
branching curve to use an interpolating spline. This solution
is very elegant, but it is somewhat limited by the require-
ment of Catmull-Clark subdivision surfaces with quadrilat-
eral elements being used. To the best of our knowledge, Ter-
riberry’s branching model has not yet been applied to large-
scale anatomical modeling.
Wewere inspired by Terriberry’s demonstration of the fact

that the equality constraint required by the medial geometry
along branching curve can be enforced by a very local cor-
rection. Actually, the constraints only involve the first or-
der derivatives of the functions on the branching curve, and
thus can be satisfied by localized adjustment. Based on that,
we propose a new way to resolve the problem. We first use
soft penalties to obtain solutions that only slightly violate the
equality constraints, and then use local corrections to make
sure that different parts of the boundary come together.
Our branching medial model is tested on a large scale
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Fig. 1. This figure illustrates the result of the deformable model
with soft penalties and the effect of local correction. The left col-
umn shows the results after deformable fitting with soft penalties.
The right column shows the results after local correction. The top
row is the model boundary, note that before the correction, there are
very tiny seams on the boundary, indicated by the arrows, which dis-
appears after the correction. The bottom row shows the spoke vector
field. Note that before the correction, the 6 spokes for the point on
medial seam do not match perfectly into 3, but have very small dis-
crepancy within each pair (one red and one blue as a pair), while
after the correction only 3 spokes can be observed.

cardiac data set in this paper. Cardiac shape modeling is
very useful in many aspects. It provides features for shape
analysis and subsequently incorporates statistical shape pri-
ors into cardiac image analysis methods, like segmentation
[6], which could be very challenging without prior knowl-
edge. The cardiac medial modeling is promising because
it explicitly provides thickness information, which is an im-
portant global feature. We fit the model to a large data set
containing 428 2-chamber heart shapes, and obtained a mean
overlap of 91.44%. To the best of our knowledge, this is the
first study to apply branching medial model at such a large
scale. The robustness of our method is thus demonstrated.

2. METHOD
2.1. Medial Geometry
We first briefly introduce the terminology and concepts of me-
dial geometry. Given a geometric object O in R3, we define
a maximal inscribed ball (MIB) in O as any ball B satisfying
B ⊆ O and for which there does not exist another ball B′
such that B ⊂ B′ ⊆ O. The locus of the centers and radii of
all MIBs is called the skeleton, or medial axis of the object.
The skeleton is thus composed of two components: the locus
of the centers of all MIBs in R3, which will be referred to as
medial scaffold, or m; and the locus of radii in R+, which
is called the radial scalar field or the thickness field, or R.

Please refer to Damon [7] for an extensive study of 3D me-
dial geometry.
The medial scaffold is a Whitney stratified set [7], i.e.,

a collection of manifolds with boundary that are connected
along edges. These manifolds will be referred to as medial
manifolds. The part of their boundaries that is shared by mul-
tiple manifolds will be called medial seam or branch curve,
while the part of the boundaries that only belongs to one me-
dial manifold will be called medial edge. Giblin and Kimia
[8] proved that there are 5 types of points that form the medial
scaffold, according to the order and multiplicity of tangency
between their MIBs and the boundary of the object. They are:
(1) points on the interior of medial manifolds; where the MIB
is tangent to the objects boundary at two points. (2) points
on medial edges, where the MIB is tangent to the boundary at
one point; (3) points on medial seams, where the MIB is tan-
gent to the boundary at three points with first-order contact
with the boundary; (4) points at medial seam-edge intersec-
tions; and (5) points at medial seam-seam intersections.

2.2. Equality Constraints AlongMedial Edges and Seams
In the deformable medial model, the user specifies m and R
as some mesh/function/surface and then deforms them to fit
image data. The deformable medial model approach lever-
ages the idea of inverse skeletonization[4], where the skeleton
of an object is defined first and the objects boundary is de-
rived analytically from the skeleton. Because the topology
and configuration of the skeleton is predefined, this approach
guarantees the consistency of the skeleton within a cohort,
which makes population study possible. The key difficulty
lies on the well-posedness of the inverse skeletonization prob-
lem, that is, given arbitrary connected surface patches m and
arbitrary positive field R, the {m, R} pair may not form the
skeleton of any subject; rather, inverse skeletonization is only
possible for the {m, R} pairs who satisfy a set of equality and
inequality constraints enforced by the medial geometry.
Let’s first introduce the geometric relationship between

the skeleton and object boundary. For the first type of points
on the medial scaffold, the MIBs are tangent to the object
boundary at two points b+ and b−, they can be derived ana-
lytically fromm and R:

b± = m+ R �U
±

(1)

�U
±

= −∇mR±
√

1− ‖∇mR‖2 �Nm, (2)

where �Nm is the unit normal vector of the medial manifold
at point m, �U

±
are unit length vectors orthogonal to ∂O at

b±, and ∇m is the Riemannian gradient of R on the medial
manifold. The vectors R · �U±, i.e, the vectors pointing from
the center of a MIB to the corresponding boundary tangency
points, are called spokes.
Near a medial edge, the two spokes will get closer and

closer to each other, collapsing to a single vector once the me-
dial edge is reached. This ensures the boundary of the object
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Fig. 2. An example of fitting the 2-chamber heart shape. The top row and bottom row are shown from different viewpoints. The first column
is the binary segmentation of the left and right ventricles. The second column is the fitted medial model, using different color to identify
medial manifolds. The third column is the medial boundary: each medial manifold generates two pieces of boundary, and those boundary
patches connect seamlessly. The fourth column overlays the model boundary, which is shown as green surfaces, on the binary segmentation,
which is shown as white wireframe.

is closed. The corresponding equality constraint is:

‖∇mR‖ = 1. (3)

Accordingly, the soft penalty for violating this constraint can
be put as:

(‖∇mR‖ − 1)2 (4)

Points on the medial seam belong to three medial manifolds
mi {i = 1, 2, 3}. When approaching the medial seam, the 6
spokes pair up according to certain order and pairs of spokes
are getting closer and closer, collapsing to 3 vectors once the
medial seam is reached. This ensures that different boundary
patches generated from the 3 medial manifolds come together
to form the boundary of an object. Assume the three patches
are oriented so that �U

i,+
= �U

i⊕1,−
(⊕ denotes additional

modulo 3) at the seam, then the constraints are:

∇i⊕2
m R−∇i⊕1

m R =
√

1− ‖∇i
mR‖2�Ni

m. (5)

With some algebra, the equality constraints above can be writ-
ten as

∂R

∂�si
+

√
1− (

∂R

∂�t
)2�N

i⊕1

m · �Ni⊕2

m = 0, (6)

where �t is the tangent vector of the seam curve, and �si =
�t × �N

i

m, which is tangent to the medial manifold mi and or-
thogonal to the seam curve. Accordingly, the soft penalty for
violating this constraint can be put as:

(
∂R

∂�si
+

√
1− (

∂R

∂�t
)2�N

i⊕1

m · �Ni⊕2

m )2. (7)

Along the medial seam there is another inequality con-
straint. The angle between any two medial manifolds should
be smaller than π. This ensures that each spoke is located
between the two medial manifolds it belongs to.
At the seam-edge intersection, ‖∇i

mR‖ equals to 1 for
the medial manifold whose edge is crossing the intersection,

and the other two manifolds will have angle π (actually they
merge into one manifold at the intersection point).
There are several more inequality constraints that the

{m, R} pair need to satisfy, like ‖∇mR‖ < 1 for all type
1 points and the Jacobian constraint to prevent local self-
intersection of the boundary. Please refer to [4] for a more
detailed description.
Because of the complicated topology of the medial scaf-

fold, it is far easier to use non-parameteric surface representa-
tions to describe medial manifolds. Loop subdivision surface
[9] are especially well suited because of their triangular ele-
ments and simplicity. The triangular control meshes for Loop
subdivision surface can be recursively refined by inserting a
vertex into each edge in the parent-level according to a set of
subdivision rules. The mesh in our model is subdivided up to
a sufficiently accurate level and the model boundary is recon-
structed on it. Boundary reconstruction from the skeleton in
Eqs 1-2 requires only up to first order derivative information.
We calculate them according to [10], which involves one ring
of neighbors for each vertex. The soft penalties are computed
on all vertices along medial seam and medial edge and their
average values will be used in the objective function of the
deformable model. In practice, we find that the vertices on
the medial seam should have at least valence 3 to get enough
freedom to satisfy the branching constraints.
The deformable branching medial models are fitted to the

segmented binary images in a fashion that is quite similar to
[4]. But here the objective function in the deformable model
includes the soft penalties to enforce constraints at medial
edges and seams, also we added a regularization term which
controls the quality of the medial mesh by penalizing big and
small angles in the triangles.
We then use a brute-force local adjustment to ensure that

the boundary generated from the skeleton is closed. Along
the medial edge and medial seam, each pair of spokes will
be given the mean value of that pair, so that all parts of the
boundary will connect seamlessly. We found out that as long
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Fig. 3. The medial model of the heart in different phases of a cardiac cycle. The medial scaffold are colored by thickness. From left to right,
the fives phases plotted are ED (End Diastole),MS (Mid Systole), ES (End Systole),D1 (Diastole 1) and D2 (Diastole 2).

Fig. 4. The histogram of the Dice overlap coefficients for all 428
fitted branching medial models.

as the soft penalties are enforced on the geometry at medial
edges and seams, the correction that’s needed is tiny in prac-
tice. Fig 1 shows the medial geometry before and after the
brute-force correction around the medial seam. While this is
not as elegant as Terriberry’s interpolation scheme, is is very
effective in practice.

3. RESULT
The data set used here contains 90 MR studies from CETIR
Sant Jordi Centre (Barcelona, Spain), which consist of both
healthy subjects and patients suffering from common Cardio-
vascular pathologies. The acquisition parameters were: TR:
3.75 4ms, TE: 1.5-1.58 ms, FA: 45, slice thickness: 8C10
mm, slice size: 256 × 256 pixels, resolution: 1.56 × 1.56
mm and FOV: 400 × 300 mm2, on a General Electric CVI
1.5 T MR facility. Expert segmentations where manually
drawn on the endocardial left ventricle and right ventricle bor-
ders, and the epicardial border of the whole heart to construct
a 2-chamber heart model which usually includes 8-12 slices
from the base to the apex. Different phases of the cardiac cy-
cle were segmented. Overall 428 heart shapes are used in the
experiment.
The proposed branching medial model is fitted to the 428

manual segmentation of 2-chamber heart model in a multi-
resolution fashion. Fig. 2 gives an example of the fitting.
Fig. 3 shows the fitted medial model of the heart in 5 dif-
ferent phases of one cardiac cycle. Fig 4 shows the histgram
of the Dice coefficient. The overall mean Dice overlap coeffi-
cient for all 2-chamber heart shapes is 91.44(±4.48)%. Note
that the manual segmentation voxel size is quite big (8-10mm
between slices), one would expect the smooth surface approx-
imation of the discrete segmentation to be less accurate. Also,
because the whole structure is thin, the boundary surface area
is large and the overlap ratio is brought down a bit.

4. FUTUREWORK
The medial model of the heart is very promising: the thick-
ness information provided by the medial model is potentially

a descriptive feature in shape analysis and a strong prior in
learning based segmentation. We plan to adopt our method to
the current learning based left ventricle segmentation frame-
work [6] to further improve its accuracy and robustness.
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